Stick Insects Walking Along Inclined Surfaces1
نویسندگان
چکیده
SYNOPSIS. In the experiments stick insects walk on an inclined substrate such that the legs of one side of the body point uphill and the legs of the other side point downhill. In this situation the vertical axis of the body is rotated against the inclination of the substrate as if to compensate for the effect of substrate inclination. A very small effect has been found when the experiment was performed with animals standing on a tilted platform which shows that the effect depends on the behavioral context. When, however, animals first walked along the inclined surface and then, before measurement, stopped walking spontaneously, a rotation of the body has been observed similar to that in walking animals. In a second experiment it was tested whether the observed body rotation is caused by the change of direction of gravity vector or by the fact that on an inclined surface gravity necessarily has a component pulling the body sideways. Experiments with animals standing on horizontal ground and additional weights applied pulling the body to the side showed similar body rotations supporting the latter idea. In a simulation study it could be shown that the combined activity of proportional feedback controllers in the leg joints is sufficient to explain the observed behavior. This is however only possible if the gain factors of coxa-trochanter joint controller and of femurtibia joint controller show a ratio in the order of 1 : 0.05 to 1 : 1.8. In order to describe the behavior of animals standing on a tilted platform, a ratio of 1 : 1.7 is necessary. In walking animals, this body rotation requires to change the trajectories of stance and swing movements. The latter have been studied in more detail. During swing, the femur-tibia joint is more extended in the uphill legs. Conversely, the coxa-trochanter joint appears to be more elevated in the downhill legs which compensates the smaller lift in the femur-tibia joint. The results are discussed in the context of different hypotheses.
منابع مشابه
Walking in Sticky Situations
Stick insects can usually be seen doing one of two unexciting things: standing still or walking. During walking, stepping movements are generally considered to be governed by one to several control centres associated with the joints that make up each leg. In order to walk in a coordinated fashion, the activity of these control centres must be synchronised, so that all the joints in one leg are ...
متن کاملStick Insect Locomotion on a Wheel: Patterns of Stopping and Starting
The relationship between standing and steady walking was investigated for stick insects walking on a wheel. Normal hexapod coordination patterns ensure that each point in the gait cycle has static stability. Nevertheless, stick insects show preferred stopping sequences: the final protraction in ipsilateral metachronal sequences is most often by a front leg and least often by a rear leg (Fig. 1,...
متن کاملMotoneuronal Activity Movements of a Stick Insect Leg
[PDF] [Full Text] [Abstract] , January 1, 2001; 85 (1): 341-353. J Neurophysiol H. Fischer, J. Schmidt, R. Haas and A. Buschges Coordination of Motor Activity Pattern Generation for Walking and Searching Movements of a Stick Insect Leg. I. [PDF] [Abstract] , March 1, 2003; 22 (3-4): 151-167. The International Journal of Robotics Research V. Durr, A. F. Krause, J. Schmitz and H. Cruse Neuroet...
متن کاملCoordinated Walking of Stick Insects on a Mercury Surface
Adult stick insects walk on a mercury surface at step frequencies in the range 1-4 Hz with a coordination similar to that found in free-walking adults at their maximum step frequency of 3 Hz. The amplitude of leg movement covers the same range as that found in free-walking animals. The use of a mercury substrate effectively removes mechanical interactions between the legs, showing that such inf...
متن کاملJoint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control.
Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to id...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002